o PennState CMPSC431W: Database Management Systems

Lecture 34

11/30/15
~—?
_—
_—
Course Website: http://www.cse.psu.edu/~yul189/ W

Slides based on McGraw-Hill & Dr. Wang-Chien%

Instructor: Yu-San Lin
yusan@psu.edu

B+ Tree Indexes

Non-leaf l \

Pages

1\ \ /
R R ¢

* Leaf pages contain data entries, and are chained (prev
& next)

* Non-leaf pages contain index entries to direct searches

B+ Tree: Example

17

/

Entries< 17

N

.

¥ A

Entries >=17

27

30

y,

T

2*

T

13
7%

x
* 14*| 16*

8

224

24*

27*

29*

33*

34*

38*

39*

Find:

— 28%*

— 29%*

— All >15*
— All < 30*

* Insert/delete: find data entry in leaf,
then change it. Need to adjust parent

sometimes

— And change sometimes bubbles up the

tree

Cost Model for Analysis

* For simplicity, ignore CPU costs:
— B: number of data pages

— R: number of records per page
— D: (average) time to read or write disk page

* Average-case analysis; based on several
simplistic assumptions

Assumptions in the Analysis

— Equality selection on key; exactly one match

Sorted files

— Files compacted after deletions

Indexed files

— Data records (= data entries) are clustered

Indexes

— Alternative 2, 3: data entry size = 10% size of record

— Hash: no overflow buckets
* 80% page occupancy >= file size = 1.25 data size

— Tree: 67% occupancy
* Implies file size = 1.5 data size

Heap Files

Scan:

Equality select

— Equality selection on key:
— Search not on a key:
Range select:

Insert

— Assume always insert at the end of file:
Delete

— Write the page back:
— If the search is based on a given rid:
— If the search is based on equality or range select:

Sorted Files

Scan:

Equality select: search based on sorted order
— Match only 1 record:
— Match more than 1 records:

Range select:
nsert:

Delete

— Read and rewrite all subsequent pages:
— If the search is based on a givenrid:
— |If the search is based on equality or range selects:

Clustered Indexed Files

 Empirical study shows that the pages usually
have 67% occupancy. The # of physical pages is:

e Scan:

* Equality select: search based indexed key
— Match only 1 record:
— Match more than 1 records:

 Range select:

* |nsert:
e Delete:

Unclustered Tree Index

* Assume that the size of data entry in the index is
1/10 of data records. If the index pages have 67%
occupancy, the # of leaf pages is: ~¥0.15B. The
number of data entries on a page is 6.7R.

e Scan:

* Equality select: search based on indexed key
— Match only 1 record:

— Match more than 1 records:

Unclustered Tree Index (cont.)

* Range select:

— If more than 10% of records satisfy the select
condition, we are better off retrieve all the data
records, sort them based on selection attribute,
and retain the records satisfying the selection

* |nsert:

e Delete:

10

Indexes Selection

* Consider the most important queries in turn

* Consider the best plan using the current
indexes, and see if a better plan is possible
with an additional index

e Attributes in clause are good index
candidates
— Exact match condition suggests hash index
— Range query suggests tree index
— Clustering is especially useful for range queries

Indexes Selection (cont.)

* Multi-attribute search keys should be
considered when a WHERE clause contains
several conditions
— Order of attribute is important for range queries

— Such indexes can sometimes enable index-only
query processing (i.e., not accessing data records)

Index Selection: Example #1

SELECTC E.dno
FROM Emp E
WHERE E.age > 20 AND E.age < 30

 AB+tree index on E.age can be used to get
qualifying tuples
— How selective is the condition? If everybody is greater
than 10, better off to perform a sequential scan

— |s the index clustered?

Index Selection: Example #2

SELECTC E.dno, COUNT(*)
FROM Emp E

WHERE E.age > 10
GROUP BY E.dno

* Consider the GROUP BY query

— If many tuples have E.age > 10, using E.age index
and sorting the retrieved tuples by dno is costly

— Clustered E.dno tree index may be better

Index Selection: Example #3

SELECTC E.dno
FROM Emp E
WHERE E.hobby = Stamps

* Equality queries based on non-candidate keys
— Possibly return duplicates
— Clustering index on E.hobby helps

Indexes w/ Composite Search Keys

search on a combination
of fields

— Equality query: every field value is equal to a constant
value. E.g., age =20 and sal =75

— Range query: some field value is not a constant. E.g.,
age =20 and sal > 10

* Data entries in index sorted by search key to
support range queries
— Lexicographic order
— Spatial order

Example of Composite Search Keys

80« |, 11 | ===
/ - I Using lexicographic
12,10 - 12 | order '
12,20 \ name age sal 12
13,75 N bob 12 10 L 13
<age, sal> cal 11 80 <age>
joe 12 20
/] sue 13 75 N\ 10
Data records
sorted by name N
/ 80
<sal>
Data entries in index Data entries

17

sorted by <sal,age> sorted by <sal>

Composite Search Keys

To retrieve Emp records with age = 30 AND sal =40

— Which is a better index?
(a) <age, sal> (b) age (c) sal

— Choice of index key orthogonal to clustering etc.
If condition is: 20 < age < 30 AND 30 < sal <50
— What is a better index?

If condition is: age = 30 AND 30 < sal < 50

— Which is a better index?
(a) Clustered <age, sal> index (b) clustered <sal, age> index

Composite indexes are larger updated more often

Index-Only Execution Plans

e Some queries can be answered without
retrieving any tuples from one or more of the
relations involved if a suitable index is
available

SELECT E.dno, COUNT(*) SELECT E.dno, MIN(E.sal)
FROM Emp E FROM Emp E

GROUP BY E.dno GROUP BY E.dno

SELECT AVG(E.sal)

FROM Emp E

WHERE E.age = 25 AND

E.sal BETWEEN 30 AND 50

Index-Only Execution Plans (cont.)

* |Index-only plans are possible if we have a tree
index with key <dno, age> or with key <age,
dno>

* Which is better?

SELECT E.dno, COUNT(*) SELECT E.dno, COUNT(*)
FROM Emp E FROM Emp E
WHERE E.age = 30 WHERE E.age >= 30

GROUP BY E.dno GROUP BY E.dno

Summary

 Many alternatives file organizations exist,
each appropriate in some situation

* |f selection queries are frequent, sorting the
file or building an index is important
— Hash-based only good for search
— Sorted files and tree-based indexes best for range
search; also good for equality search
* Index is a collection of data entries plus a way
to quickly find entries with given key values

Summary (cont.)

* Data entries can be actual data records, <key,
rid> pairs or <key, rid-list> pairs

* Can have several indexes on a given file of
data records, each with a different search key

* Indexes can be classified as clustered v.s.
unclustered, primary v.s., secondary.
Differences have important consequences for
utility/performance

Summary (cont.)

* Indexes must be chosen to speed up
important queries

— Indexes maintenance overhead on updates to key
fields

— Choose indexes that can help many queries
— Build indexes to support index-only strategies

— Clustering is an important decision; only one index
on a given relation can be clustered

— Order of fields in composite index key can be
Important

Don’t Forget

Homework #5 due this Wednesday (12/2)
Homework #6 due on 12/11
Project demo #2 this week

— Expectation: almost done, close to what you will
present to the whole class in final presentation

Final: 12/16 8 - 9.50 a.m. @362 Willard

