PennState CMPSC431W: Database Management Systems

Lecture 1 08/24/15

Instructor: Yu-San Lin

yusan@psu.edu

Course Website: http://www.cse.psu.edu/~yul189/cmpsc431w

Slides based on McGraw-Hill & Dr. Wang-Chien Lee

Outline

- Overview of this course
- Motivation for studying database management systems
- Three types of data models

Course Emphasis

- How to design a database application
- How to use a DBMS effectively
- How a DBMS works

Course Organization

CHAPTER 1: OVERVIEW OF DATABASE SYSTEMS

What is a DBMS?

Database

- is storage of _____;
- Maintains a very ______, ____ collection of data.
- A database models a real-world enterprise.
 - _____ (e.g., students, courses)
 - (e.g., John is taking CMPSC 431W)
- Database Management System (DBMS) is a software package designed to store and manage databases.

Database Applications

- Banking: all transactions
- Airlines: reservations, schedules
- Universities: registration, grades
- Sales: customers, products, purchases
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions

... The list goes on!

File System v.s. DBMS

- File system: a collection of individual ______
 accessed by application programs
- **DBMS:** a computerized record-keeping system
- Drawbacks of file systems:

Why Use a DBMS?

•					
•					
•					
•					
•					
•					
•					
•		· · · · · · ·			
			 		

Data Models

- A data model is a collection of high-level constructs for describing stored data that hides low-level storage details.
- Three major data models are
 - data model

 - data model

Network Data Model

Data records are linked as ______.

Hierarchical Data Model

The hierarchical model organizes data records as collections of .

Relational Data Model

- The relational data model is the most widely used data model today.
 - Main concept: _____, basically a table with rows and columns.
 - Every relation has a _____, which describes the columns, or fields.
- Example:

```
Students ( sid: string, name: string, login: string, age: integer, gpa: real)
```

Don't Forget

- Sign up the two accounts:
 - GitHub
 - Asana
- Submit your team information, along with account information, by this Friday (8/28)
- Reading:
 - Project description: prepare any question to discuss on Friday
 - Section 1.1 ~ 1.5